
42 The Delphi Magazine Issue 54

Patterns And Persistence
Using design patterns to create a persistence framework
by Peter Hinrichsen

The tools that come with Delphi
can be used to build a data-

base application very quickly. The
combination of the BDE alias,
TDatabase, TQuery, TDataSource and
TDBEdit has incredible power. The
problem, though, is that with every
TDatabase or TQuery you drop on a
TDataModule, you have tied yourself
more closely to the BDE. With
every TDBEdit added to a form, you
have coupled yourself to a specific
field name in a specific database.

The alternative is to roll your
own persistence layer. This is hard
work and will take hundreds of
hours before it comes close to
matching the functionality of what
comes out of the box with Delphi.
However, if the business case justi-
fies this work, then the results can
be stable, optimised and versatile,
plus extremely satisfying to build.

I will discuss some of the prob-
lems with data aware controls,
then take a high level look at the
visitor framework as an alterna-
tive, delving into the detail of the
persistence layer which I have
written, which is constructed
around the iterator and visitor
design patterns.

I Hate Data Aware Controls...
A couple of months ago there was
a discussion on the Australian
Delphi User Group’s mailing list
(www.adug.org.au) on the topic of
developing your own persistence
framework versus using data
aware controls. Many posts were
made and everyone seemed to
have a strong opinion one way or
the other. Most agreed there was a
place for data aware controls in
single-tier file-based applications
or client/server prototypes. Many
experienced client/server develop-
ers agreed that there was no room
for data aware controls in sophisti-
cated client/server applications.

Here are four problems with data
aware controls.

Tight coupling to the database
design. The database layer is very
tightly coupled to the presentation
layer: any change to the database
means that changes might be
needed in many places through the
application. It is often hard to find
where these changes must be
made, as the links from the data
aware controls in the application
to the database are made with pub-
lished properties and the Object
Inspector. This means that the
places to make changes cannot be
found with Delphi’s search facility.
Also, the amount of code checking
done by the compiler is reduced.
This means that some bugs may
not be detected until runtime, or
may not be detected at all until the
user navigates down a path the
developer did not foresee.
Developing a persistence frame-
work allows you to refer to a data
object’s values by property name
rather than by using a DataSet’s
FieldByName method. This gives
greater compile-time checking and
leads to simplified debugging.

Data aware controls create more
network traffic. It is a simple exer-
cise to drop a few data aware con-
trols on a form, connect them to a
TDataSource, TQuery and TDatabase,

then load the DBMonitor program
(sqlmon.exe) and watch the
excess network traffic they create.
There is a good article on how the
network monitor hooks into the
BDE’s API in the August 1999 issue.
A custom persistence framework
can be optimised to reduce this
superfluous network traffic and is
a topic large enough to justify a
dedicated article.

Tight coupling to vendor specific
database features. At the simplest
level, all SQL-aware databases
accept the same SQL syntax. For
example, a simple, select * from
customers will work for all the sys-
tems I have come across. As you
become more sophisticated with
your SQL, you will probably want
to start using special functions, a
stored procedure, or perhaps an
outer join, which will be imple-
mented differently by each data-
base vendor. Data aware controls
make it difficult to build your appli-
cation so it can swap between
databases seamlessly.

Tight coupling to a data access
API. The BDE allows us to swap
aliases when we want to change
databases, but what if you want to
switch from BDE data access to
ADO, IBObjects, Direct Oracle
Access (DOA), TClientDataSet or a
custom data format? This is not
the fault of the data aware con-
trols, but is still a problem with the
component-on-form style of devel-
oping. A custom persistence
framework can be designed to
eliminate this tight coupling of an
application to a data access API.

Roll Your Own Framework
These four problems are all
addressed by building your own
persistence framework, but it is
incredibly hard work. Danny
Thorpe was presenting at the 1999
Borland Conference in Australia
and several of us had a chat about
roll-your-own persistence frame-
works. Danny was amazed that

➤ Figure 1

1. Pr1. Presentation layer (GUI)esentation layer (GUI)

2. GUI/BOM mapping2. GUI/BOM mapping

3. Business Object Model (BOM)3. Business Object Model (BOM)

4. BOM / Persistence mapping4. BOM / Persistence mapping

5. Persistence5. Persistence

February 2000 The Delphi Magazine 43

Advantages Disadvantages When Do I Use?

Data aware
controls

Good for prototypes.

Good for simple, single tier apps.

Good for seldom used forms, like
one-off setup screens that may be
used to populate a new database
with background data.

Higher maintenance and
debugging costs.

Higher network traffic.

Limited number of data aware
controls in Delphi (but plenty if
you use third party libraries).

Can’t be used to edit custom file
formats, registry entries or data
not contained in a TDataSet.

Hard to develop your own data
aware controls.

Difficult when the database does
not map directly into the GUI,
ie a well normalised database.

Extensive code reuse is difficult.

Low end customers (small
businesses with few users).

Throw away prototypes.

Data maintenance apps that my
customers will not see.

Systems where I have total control
over the database design.

When the user wants the app to
look and perform as if it were
written in VB.

Persistence
framework

Good for complex applications.

Lower network traffic.

Lower total cost of ownership.

When the database is storing non
text data like multimedia, or data
which must be manipulated with
complex algorithms.

Decouple GUI from database.

More skilled development team.

Higher up front development cost.

Many reporting tools take input
from a TDataSet. Some extra code
would be needed to connect the
persistence framework to the
reporting tool.

Must re-build what comes out of
the box with Delphi.

High end (corporate) customers
with many users where
performance is important.

Systems with complex data models
that I have little control over.

Systems that require a TreeView,
ListView look and feel.

Systems that must be database
vendor independent.

anybody would go to all that trou-
ble, considering Borland had done
such a great job with Delphi. I
believe he is right, except when
you want true database vendor
independence, or if your business
rules are very complex. See Table1.

The framework we will develop
consists of five layers, as shown in
Figure 1. At the centre of the frame-
work is layer 3, the Business Object
Model (BOM). In the address book
application we will build as an
example, there is a list of TPerson
objects. Each person has a list of
addresses and phone numbers.

The persistence layer (layer 5)
comprises a family of TQuery
objects that are responsible for
reading and saving data to and
from the database. The BOM/per-
sistence layer (layer 2) maps data
from the business object layer
(layer 3), to and from the TQuery(s)
in layer 5. The presentation layer
(layer 1) displays the data using a
TreeView, ListView, Edits or a
graph, and allows the user to inter-
act with the data. The GUI/BOM
mapping layer (layer 4) maps data
from level 3 (the BOM) into the GUI
and also manages the saving of
changes back into the BOM.

To change database vendors or
database types, we simply replace
the persistence layer (layer 5).
This layer can even be distributed
as a runtime package so this
switching can be done at runtime: a
very powerful technique.

Design Targets
As an example, we will construct
an address book application to
store names and contact details.
Our application must be flexible
enough to cater for new address
types without any re-engineering.
We need to allow for two types of
addresses: postal addresses and
electronic addresses, such as
phone, fax, email and website.

Our presentation layer has to
have an Explorer/Outlook look and
feel, making extensive use of
Microsoft’s TreeView and ListView
common controls.
The application must
perform well and not
have the look and feel
of a conventional,
form-based,
client/server app.

The data is to be
stored using Interbase
and accessed using

the BDE, but the framework must
be flexible enough to allow us to
move to IBObjects, ClientDataSet
or a custom file format with little
work. Our application must be
easy to move to multi-tier should
this become a requirement.

To achieve our design goals, we
use the iterator and visitor
patterns to build a persistence
framework. The main form of our
application is shown in Figure 2.

A right mouse click on the tree
will let you add or delete a person.
A right click on either of the list
views will open a modal dialog and
let you edit, insert or delete an
address or e-address.

Business Object Model
The core of the address book
application is its business object
model layer and the UML for this

➤ Table 1: Data aware controls
or a persistence framework?

➤ Figure 2

44 The Delphi Magazine Issue 54

layer is shown in Figure 3 which
shows the public properties and
the relationships between the
main classes.

The classes that are displayed in
the TreeView or ListView all have a
Caption property, used in conjunc-
tion with RTTI to map the BOM into
the GUI, as discussed below.

At the top of the tree of contain-
ment is the TAdrsBook class that
owns a single TPersonList. The
TAdrsBook class was added so we
could implement a list of compa-
nies as well as a list of people, in the
future. The TPersonList contains
one TPerson object for each person
in the database. The TPerson class
has some ‘flat’ information like
last_name and first_name, and also
a list of TAddress(es) and of
TEAddress(es). Each instance of
TAddress holds information like
address type, street, town, etc,
while each instance of TEAddress
holds an electronic address.

Figure 4 shows the inheritance of
our business object model with
Delphi’s TPersistent class at the
top of the tree. I chose TPersistent
as the base class because it gives
access to RTTI, which will enable
us to construct generic TTreeView
and TListView controls to browse
the business object model. Next
comes the TVisitedAbs class,

which introduces abstract meth-
ods that allow us to process visi-
tors (more on this later). At the
next level are the TPerObjAbs and
TVisList classes. The TPerObjAbs
(short for Persistent Object
Abstract) adds functionality
required when saving data. The
TVisList is a TList replacement
that knows how to iterate over all
its items. Lastly we have the con-
tainer classes (TPersonList, TAdd-
ressList and TEAddressList) and
data classes (TAddressBook,
TPerson, TAddress and TEAddress).

Database Structure
For this example, we’ll be saving
our data to an Interbase database.
The structure of the main tables
maps directly to the class hierar-
chy. The SQL to create the data-
base is shown in Listing 1 (which is
on the disk with all the code).

There are several important
things to note about how we map
our object oriented business
model into the relational database.

First, classes map to tables. For
each persistent class, there is a
corresponding table. This is simple
to achieve with our example, as
there is no inheritance within the
persistent classes. Modelling
inheritance in a relational data-
base is hard work.

Secondly, properties map to col-
umns. For each ‘flat’ property,
there is a corresponding column in
that class’s table.

Lastly, objects in memory are
uniquely identified by their
memory address, but this is of no
use to us when we are trying to per-
sist our objects. To overcome this
problem, we add the Object ID
(OID) property high up in the class
hierarchy, then use the OID to
locate the correct record in the
database for updates and deletes.
This is discussed in a paper refer-
enced at the end of the article.

An OID must be generated by
Delphi when a new instance of a
class is created. One way to do this
is to create a sequence generator
in the database, and reference this
as each object is created. This,
however, will mean a round trip to
the database every time a new
object is created. Also, sequence
generators differ between data-
base vendors, so we have created
the table NEXT_OID, which is
dedicated to holding the next OID
number. The details of this
technique are shown later.

Patterns We Shall Use
The persistence framework is
based on the three patterns shown
in Table 2.

The Iterator. The BOM comprises
a tree of people, addresses and
e-addresses. To save the elements
of this tree to a database we must
visit all the nodes of the tree, iden-
tify those that have changed, then
execute SQL to insert, update or
delete the data from the database.
To ensure this process touches all
nodes of the tree, we start at the
top of the tree and the child nodes
are processed automatically. This
functionality is managed by a class
we call TVisitedAbs.

The Visitor. In this example, we
are persisting to a relational data-
base, so each class in our object
model will have a family of SQL
strings to manage the interaction
with the database. For example,
the Person class will have some
SQL to create a new person, delete
or update an existing person.
There will also be SQL to read all
people matching certain search

TTAdrs BookAdrs Book TPerson ListTPerson List

CaptionCaption
People: TPersonListPeople: TPersonList
……

Caption: StringCaption: String
ListList
……

TPersonTPerson

AddressList: TAddressList: TAddressListAddressList
Caption: StringCaption: String
EAddressList: TEAdressListEAddressList: TEAdressList
FirstName: StringFirstName: String
Initials: StringInitials: String
LastName: StringLastName: String
Notes: StringNotes: String
TTitle: Stringitle: String
……

……

TTAddrAddress Listess List

TEAddrTEAddress Listess List

AdrsTAdrsType: Stringype: String
Country: StringCountry: String
Lines: StringLines: String
PCode: StringPCode: String
State: StringState: String
TText: Stringext: String
……

……

CaptionCaption
EAdrsTEAdrsType: Stringype: String
TText: Stringext: String
……

……

TEAddrTEAddressess

TTAddrAddressess

**

TPersistentTPersistent

TVTVisited Absisited Abs

TPer Obj AbsTPer Obj Abs

TTAdrs BookAdrs Book TPersonTPerson TTAddrAddressess TEAddrTEAddressess TPerson ListTPerson List TTAddrAddress Listess List TEAddrTEAddress Listess List

TVTVis Listis List

➤ Above: Figure 3 ➤ Below: Figure 4

46 The Delphi Magazine Issue 54

// Create an Object ID (OID) domain
create domain domain_oid as integer not null ;
// Create a domain to hold info about the address type
create domain domain_type as varchar(20) not null ;
// Create a table to allow the generation of new OIDs
create table Next_OID (next_oid domain_oid) ;
insert into next_oid
(next_oid)

values
(100) ;

// Create a table to hold information about people
create table person
(oid domain_oid,
last_name varchar(60),
first_name varchar(60),
title varchar(10),
initials varchar(10),
notes varchar(250),
primary key (oid)) ;

// Create a table to hold street addresses

create table adrs
(oid domain_oid,
owner_oid domain_oid,
adrs_type domain_type,
lines varchar(180),
state varchar(20),
pcode varchar(10),
country varchar(20),
primary key(oid),
foreign key(owner_oid) references person (oid)
on delete cascade) ;

// Create a table to hold phone, fax, EMail addresses
create table EAdrs
(oid domain_oid,
owner_oid domain_oid,
eadrs_type domain_type,
text varchar(60),
primary key(oid),
foreign key(owner_oid) references person (oid)
on delete cascade) ;

➤ Listing 1

conditions into a list. This SQL per-
forms the basic create, read,
update and delete functionality
common to most databases. The
address book has three persistent
classes (person, address and
e-address), so there will be 12 SQL
statements, 12 TQuery objects and
12 classes to manage the mapping
of the business objects to the
TQuery objects. The visitors are
responsible for mapping the busi-
ness objects to the appropriate
SQL statement and executing the
SQL against the database. This
functionality is encapsulated in the
TVisAbs and TVisDB classes.

The Factory (TVisitorMgr). This
is a fairly simple example with only
three classes being persisted, but
there are 12 visitor classes to
manage this persistence. The main
disadvantage of using the visitor
pattern to implement a persistence
framework is that it leads to a pro-
liferation of classes. To help
manage these classes, we need to
create a visitor manager which will
be responsible for creating, cach-
ing and freeing the visitor objects

as required. A modified factory will
be used to create the visitors on
demand, store them in a cache
once they have been created,
cause them to be iterated over the
BOM in the correct order, manage
database transactions, and free
them when the application closes.

The Iterator
Once we have created the family of
visitors to manage persistence, we
must devise a way of passing each
of these visitors to every node of
the BOM. There are a number of
ways to achieve this functionality,
but after some months of using vis-
itors and iterators, I settled on the
idea of defining a method called
Iterate that accepts a single
parameter of type TVisitorAbs in a
base class.

For example, say we have an
instance of the TPerson class called
FPerson, and an instance of the
TVisSaveAddress class called
lVisSaveAddress. We want to pass
the visitor to the class at the top of
the tree, and have it passed over all
the child nodes of that object. The
code in Listing 2 shows this.

You can imagine that it is a time-
consuming and error-prone pro-
cess to write an iterate method on
every class in the BOM. Each time a
TList property is added or
removed from a class, its Iterate
method must be modified. After a
week or two of debugging frustra-
tion, I decided to rewrite the Iter-
ate method using RTTI so it would
automatically process all list prop-
erties (as long as they are pub-
lished.) Listing 3 shows the code
for the modified Iterate method.

This method performs four
tasks. After asserting that the
passed visitor is not nil, it executes
the visitor against the current
object (self). Next, a TStringList
is created, and Delphi 5’s new
‘Easy Access RTTI’ is used to popu-
late the list with the names of all
the properties of type TObject. The
tiGetPropertyNames procedure

Pattern Name Intent (from ‘Gang of Four’ book)

Iterator Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Visitor Represent an operation to be performed on the elements of an
object structure. Visitors let you define an operation without
changing the classes of the elements on which it operates.

Factory
(Visitor Manager)

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

➤ Table 2: Patterns used.

// Example of passing a visitor to a class to be visited
Procedure Save ;
Var lVisSaveAddress : TVisSaveAddress ;
Begin
lVisSaveAddress := TVisSaveAddress.Create ;
try
FPerson.Iterate(lVisSaveAddress) ;

finally
LVisSaveAddress.Free ;

end ;
End ;
// Example of the iterate method of the person class
Procedure TPerson.Iterage(pVisitor : TVisitorAbs) ;
var i : integer ;
Begin
// Execute the visitor against the person object
pVisitor.Execute(self) ;
// Execute the visitor against all the address objects owned by the person
for i := 0 to FPersonList.Count - 1 do
pVisitor.Execute(TPerson(FPersonList.Items[I])) ;

End ;

➤ Listing 2

February 2000 The Delphi Magazine 47

takes a TPesistent, a TStringList
and a set containing the types of
the properties to be returned. The
code for tiGetPropertyNames on the
disk is worth a look if you want to
explore Delphi 5’s simplified RTTI.

Now we have a list of properties
that are objects, we can scan the
list and get a pointer to the
instance of the object pointed to by
these properties. If the property is
a TVisitorAbs, then the visitor is
executed with the property as a
parameter. If the property is a
TList its list members are iterated.

Abstract Persistent Object
All the classes that must be saved
in some way have several things in
common, so they all descend from
the same abstract. The interface of
TPerObjAbs is shown in Listing 4.
The most important properties are
OID, a unique integer used to iden-
tify a particular instance of an
object in the database. The
ObjectState property is of type
TPersistentObjectState, an ordinal
type with the possible values
shown in Listing 5.

The constructor Create adds one
extra line that sets the ObjectState
property to posClean. The addi-
tional constructor CreateNew calls
the main constructor Create but
adds the additional functionality to
call the OID generator to return a
new and unique OID.

The property Owner is an optional
back-pointer to the owning object.
This is useful when you need to
know who owns a child object, and
is used in much the same way as a
TComponent’s Parent or Owner prop-
erty. The Owner property is neces-
sary when a child object is being

saved to a database where there is
a primary key/foreign key relation-
ship and is used to determine the
foreign key value.

The Deleted property is used
when reading data into the GUI. An
object may have been deleted from
the user’s point of view, but it has
only been marked for deletion and
it has not yet been removed from
the database. Objects with a
Deleted property equal to true will
be excluded from the GUI.

Dirty is used to remind the user
if any changes have been made. For
example, the main form’s Close-
Query event checks the AddressBook
object’s Dirty property and if true,
asks the user if they want to save
their changes. A TPerObjAbs object
will be considered dirty if any of its
child objects have been changed,
so we need a way of iterating over
the object tree and testing all child
objects. This is achieved with a
Visitor called TVisPerObjIsDirty

and the AcceptVisitor and Execute
methods are shown in Listing 6.

The Delete property has a
SetDelete method that sets
the ObjectState property to
posDeleted, and triggers a visitor to
scan all child objects and set their
ObjectState to posDeleted. This is
necessary when a Person is deleted
as all the addresses and
e-addresses must also be deleted.
This can be achieved by imple-
menting a cascading delete as part
of the referential integrity set up in
the database, but this is starting to
create database dependencies so
we avoid it here.

The Visitor
Listing 7 shows the interface and
implementation sections of the
TVisitorAbs class. There are three
methods of interest: Create, Exe-
cute and AcceptVistior, which can
be overridden in the descendant
classes.

// Pass a visitor object to all contained list or object
// properties.
procedure TVisitedAbs.Iterate(pVisitor: TVisitorAbs) ;
var
lsl : TStringList ;
i,j : integer ;
lVisited : TObject ;

begin
// Before processing, confirm that nil was not passed
Assert(pVisitor <> nil, 'Visitor unassigned') ;
// Execute the visitor against self
pVisitor.Execute(self);
// Use RTTI to scan through all properties of type TList
// Create a string list to hold the property names
lsl := TStringList.Create ;
try
// Get all property names of type tkClass
tiGetPropertyNames(self, lsl, [tkClass]) ;

for i := 0 to lsl.Count - 1 do begin
// Get a pointer to the property
lVisited := GetObjectProp(self, lsl.Strings[i]) ;
// If the property is a TVisitedAbs, then visit it.
if (lVisited is TVisitedAbs) then
TVisitedAbs(lVisited).Iterate(pVisitor) ;

// If the property is a TList, then visit it's items
if (lVisited is TList) then
for j := 0 to TList(lVisited).Count - 1 do
if (TObject(TList(lVisited).Items[j]) is
TVisitedAbs) then
TVisitedAbs(
TList(lVisited).Items[j]).Iterate(pVisitor);

end ;
finally
lsl.Free ;

end ;
end ;

TPerObjAbs = class(TVisitedAbs)
private
FIntOID : integer ;
FObjectState : TPersistentObjectState ;
FOwner: TPerObjAbs;
function GetDeleted: boolean;
procedure SetDeleted(const Value: boolean);
function GetDirty: boolean;
procedure SetDirty(const Value: boolean);

protected
procedure SetOID(const Value: integer); virtual ;

public
constructor Create ; override ;
constructor CreateNew ; virtual ;
property OID : integer read FIntOID write SetOID ;
property ObjectState : TPersObjState read FObjectState write FObjectState ;
property Owner : TPerObjAbs read Fowner write FOwner ;
property Deleted : boolean read GetDeleted write SetDeleted ;
property Dirty : boolean read GetDirty write SetDirty ;

end ;

➤ Listing 3

➤ Below: Listing 5➤ Above: Listing 4

TPersistentObjectState =
(posCreate, // The object is new and must be created in the DB
posRead, // The object has been created, but not filled with data
posPK, // The object has been created, but only it's primary key read
posUpdate, // The object has been changed, the DB must be updated
posDelete, // The object has been deleted, it must be deleted from the DB
posDeleted, // The object was marked for deletion, and has been deleted
posClean // The object is 'Clean' no DB update necessary) ;

48 The Delphi Magazine Issue 54

Create is no different to
TObject.Create, except that it is
declared as Virtual, which makes
it easier to override and is also nec-
essary when the class is instan-
tiated from a factory. Execute is
called with an instance of the class
to be visited passed as a parameter
and will probably be customised in
the descendant class. Accept-
Visitor is the function where the
decision to process the object
being visited is made.

We require two special visitor
classes to handle relational data-
base access and these are called
TDBVisSelect (to read the results of
an SQL SELECT statement into a
TList) and TDBVisUpdate (to exe-
cute some create, update or delete
SQL for the visited object.) Both
these DB visitors are descendant
from the TVisDBAbs abstract class.
The interface of TVisDBAbs is shown
in Listing 8. Most of the implemen-
tation is introduced in the concrete
descendant classes, except for a
TQuery that is created and freed in
the classes’ constructor and
destructor. The DBConnection prop-
erty is a pointer to a DBConnection
that is set and cleared by the visi-
tor manager. This allows a number
of visitors to be processed in the
context of one database transac-
tion so a single error will prevent
any data from being saved.

The Virtual methods Init,
SetupParams, MapRowsToObject and
UpdateObject are introduced but
not implemented. Init is where the
Query.SQL.Text property can be
assigned according to the
functionality required by the visi-
tor. SetupParams is used when a
select visitor requires a parameter.
MapRowsToObject is used when a
select visitor is reading data from a

SQL result set into a list of objects.
UpdateObject is called when an
update visitor has been processed
and the state of the visited object
has been changed by the execution
of the visitor. This will typically be
called when create, update or
delete SQL has been called and the
object is no longer Dirty.

TVisDBSelect and TVisDBUpdate
override the Execute method and
introduce custom processing. The
Execute method of TVisDBSelect is
shown in Listing 9. The first step is
to test if the visitor is to be
accepted. Next, if the visitor has
been accepted, the Init method is
called. This will probably set the
Query.SQL.Text property if it has
not already been set. Next,
SetupParams is called to map any
parameters to the SQL, then

Query.Open is called to execute the
SQL. The rows of the result set are
now scanned and MapRowsToObject
is called for each row. This is
where an object can be added to
the list for each result set row.

The Execute method of
TVisDBUpdate is shown in Listing 10
and simply calls the methods
AcceptVisitor, Init, SetupParams,
MapRowsToObject, Query.ExecSQL
and UpdateObject in turn.

It is intended that TVisDBSelect
takes a single object, with a TList
property and reads the rows of an
SQL select statement into the TList
property. The TVisDBUpdate works
the other way round and takes a
single TPerObjAbs object and
updates the database accordingly.

Visitor Manager
The final piece of the framework to
look at is the visitor manager. The
interface of the TVisitorMgr and its
associated class, the TVisMapping,
are shown in Listing 11. The
VisitorMgr is based on the Factory
Pattern that was discussed in the
September edition of The Delphi
Magazine. The VisitorMgr contains
two methods that are important:
RegisterVisitor and Execute.

function TVisPerObjIsDirty.AcceptVisitor: boolean;
begin
result := (Visited is TPerObjAbs) and (not Dirty) ;

end;
procedure TVisPerObjIsDirty.Execute(pVisited: TVisitedAbs);
begin
inherited Execute(pVisited) ;
if not AcceptVisitor then exit ; //==>
// If the visited object is marked to be created, updated
// or deleted, then set Dirty to true.
Dirty := TPerObjAbs(pVisited).ObjectState in

[posCreate, // The object is new
posUpdate, // The object has been changed
posDelete]; // The object has been deleted

end;

➤ Listing 6

TVisitorAbs = class(TObject)
private
FVisited : TVisitedAbs ;

protected
function AcceptVisitor : boolean ; virtual ;

public
constructor create ; virtual ;
procedure execute(pVisited : TVisitedAbs) ; virtual ;
property Visited : TVisitedAbs read FVisited write FVisited ;

end ;
constructor TVisitorAbs.create;
begin
inherited create ;

end;
function TVisitorAbs.AcceptVisitor : boolean;
begin
result := true ;

end;
procedure TVisitorAbs.execute(pVisited: TVisitedAbs);
begin
Visited := pVisited ;

end;

➤ Above: Listing 7 ➤ Below: Listing 8

TVisDBAbs = class(TVisitorAbs)
private
FQuery : TQuery ;
FDBConnection : TtiDBConnection;
procedure SetDBConnection(const Value: TtiDBConnection);

protected
function AcceptVisitor : boolean ; override ;
procedure Init ; virtual ;
procedure SetupParams ; virtual ;
procedure MapRowsToObject ; virtual ;
procedure UpdateObject ; virtual ;
property Query : TQuery read FQuery ;

public
constructor Create ; override ;
destructor Destroy ; override ;
property DBConnection: TtiDBConnection
read FDBConnection write SetDBConnection;

end;

February 2000 The Delphi Magazine 49

RegisterVisitor takes two para-
meters: a string to identify the
process and a class reference to
identify the visitor being regis-
tered. The code in Listing 12 regis-
ters three visitors to manage the
persistence of the TAddress class.
When RegisterVisitor is called, an
instance of TVisMapping is created
and added to the visitor manager’s
list. When the visitor manager’s
Execute method is called, the list of
TVisitorMapping(s) is scanned and
each matching TVisitorMapping
has its DBConnection property
assigned, then its Execute method
called. The TVisitorMgr.Execute
method is shown in Listing 13.

Listing 14 shows the TVis-
Mapping.Execute method, which
performs four main functions.
First, if the visitor property of the
TVisMapping (remember, this is a
cache of visitors) is nil, then it must
be created by calling the virtual
constructor on the class reference.
Next, if the visitor is a TVisDBAbs
descendant, and hence is manag-
ing database persistence, its
DBConnection property will be set.
Thirdly, the visitor is passed to the
pVisited.Iterate method and

finally, the DBConnection property
is set to Nil.

This completes the core classes
in the visitor framework, which
manages database persistence. In
summary, you can see the classes
in Table 3.

procedure TVisDBSelect.Execute(pVisited: TVisitedAbs);
begin
// Call inherited to set Visited property making it accessable to other methods
inherited Execute(pVisited) ;
try
// Test if the visitor is to be executed against this visited object
if not AcceptVisitor then exit; //==>
if not InitCalled then Init; // If necessary, then call Init
SetupParams; // Map any parameters into the Query
Query.Open ; // Execute the Query
// Scan result set and call MapRowsToObject for each row
while not Query.EOF do begin
MapRowsToObject ;
Query.Next ;

end ;
UpdateObject; // Set object’s ObjectState to reflect its changed state

finally
Visited := nil ;

end ;
end;

➤ Listing 9

procedure TVisDBUpdate.Execute(
pVisited: TVisitedAbs);

begin
inherited Execute(pVisited) ;
try
if not AcceptVisitor then exit;
if not InitCalled then Init;
Init;
SetupParams;
MapRowsToObject;
Query.ExecSQL;
UpdateObject;

finally
Visited := nil ;

end ;

➤ Listing 10

➤ Above: Listing 11

gVisitorMgr.RegisterVisitor(cgsAdrs_Update, TVisAdrsCreate) ;
gVisitorMgr.RegisterVisitor(cgsAdrs_Update, TVisAdrsUpdate) ;
gVisitorMgr.RegisterVisitor(cgsAdrs_Update, TVisAdrsDelete) ;

➤ Below: Listing 12

procedure TVisitorMgr.Execute(const psGroupName: string;pVisited : TVisitedAbs);
var
i : integer ;
lsGroupName : string ;

begin
lsGroupName := upperCase(psGroupName) ;
for i := 0 to FVisMappings.Count - 1 do
if FVisMappings.Strings[i] = lsGroupName then begin
TVisMapping(FVisMappings.Objects[i]).DBConnection := FDBConnection ;
TVisMapping(FVisMappings.Objects[i]).Execute(pVisited) ;

end ;
end;

➤ Above: Listing 13 ➤ Below: Listing 14

procedure TVisMapping.Execute(pVisited : TVisitedAbs) ;
begin
Assert(pVisited <> nil, 'Visited not asigned') ;
if Visitor = nil then
Visitor := ClassRef.Create ;

if Visitor is TVisDBAbs then
TVisDBAbs(Visitor).DBConnection := DBConnection ;

pVisited.Iterate(Visitor) ;
if Visitor is TVisDBAbs then
TVisDBAbs(Visitor).DBConnection := nil ;

end;

TVisMapping = class(TObject)
private
FsGroupName : string ;
FClassRef : TVisClassRef ;
FVisitor : TVisitorAbs ;
FDBConnection: TtiDBConnection;

public
constructor CreateExt(const psGroupName: string;
const pClassRef: TVisClassRef);

property GroupName : string read FsGroupName write FsGroupName ;
property ClassRef : TVisClassRef read FClassRef write FClassRef ;
property Visitor : TVisitorAbs read FVisitor write FVisitor ;
property DBConnection: TtiDBConnection read FDBConnection write FDBConnection;
procedure Execute(pVisited : TVisitedAbs) ;

end ;
TVisitorMgr = class(TObject)
private
FVisMappings : TStringList ;
FDBConnection : TtiDBConnection ;

public
constructor create ;
destructor destroy ; override ;
procedure RegisterVisitor(const psGroupName: string ;
const pClassRef : TVisClassRef) ;

procedure Execute(const psGroupName: string; pVisited: TVisitedAbs);
end ;

The relationship between the
TVisitedAbs and TvisitorAbs and
their descendants is shown in the
UML class diagram in Figure 5. The
visitor manager framework is
shown in Figure 6. We shall now
look at how persistence is imple-
mented using this framework.

Implementing Persistence
To illustrate this framework in
action, we’ll look at reading a list of
TPerson(s) from the database, then
saving any changes back to the
database. To improve perfor-
mance, the initial read pass only
reads primary key (OID) informa-
tion, and enough text to display
the person’s name in the
TreeView. When the node on the
tree view is clicked, the detail is

50 The Delphi Magazine Issue 54

read, along with the addresses and
e-addresses. This is a great tech-
nique for improving performance.
Another three visitors manage the
saving of data. In all there will be
five visitor classes, Listing 15
shows their interface sections.

The implementation of the visi-
tor to read a person’s details when
a node on the TreeView is clicked is
shown in Listing 16. The Accept-
Visitor function checks that the
visited class is a TPerson, and then
it checks that its ObjectState is
posPK (ie persistent object state,
primary key). If AcceptVisitor
returns true, the other methods
are called. Init sets the Query.
SQL.Text property to select a per-
son’s details using their OID.
SetupParams sets the Query.Param-
ByName(‘OID’).AsInteger property
to the person’s OID. MapRowTo-
Object copies the results of the

TVisitedAbs Descends from TPersistent and introduces the virtual method
Iterate, which causes all published properties of type TVisitedAbs or
TList to be iterated.

TPerObjAbs Descends from TVisitedAbs and adds the OID, Owner, ObjectState,
Deleted and Dirty properties along with the constructor CreateNew
which will call Create and assign a new, unique OID.

TVisitorAbs The abstract visitor that contains the virtual methods AcceptVisitor
and Execute.

TVisDBAbs Descends from TVisitorAbs and adds a DBConnection property,
along with an instance of TQuery. The Init, SetupParams,
MapRowsToObject and UpdateObject virtual methods are also
introduced.

TVisDBSelect Descends from TVisDBAbs and overrides the Execute method to call
the methods Init, SetupParams, MapRowsToObject and
UpdateObject in turn.

TVisDBUpdate Descends from TVisDBAbs and overrides the Execute method to call
the methods Init, SetupParams, MapRowsToObject and
UpdateObject in turn.

TVisitorMgr Manages a list of TVisMapping(s), which are created when a visitor
is registered. Calls a family of visitors and sets their DBConnection
property when the Execute method is called.

TVisMapping Stores a Visitor’s class reference, then an instance of the visitor
once it has been created. Executes the visitor after assigning its
DBConnection property if necessary.

➤ Table 3
IntrIntroduces the viroduces the virtualtual
method Iterate whichmethod Iterate which
causes all publishedcauses all published
prproperoperties of typeties of type
TVTVisitedAbs or TList toisitedAbs or TList to
be iteratedbe iterated

IntrIntroduces theoduces the
prproperoperties Deleted,ties Deleted,
DirDirtyty, ObjectState, OID, ObjectState, OID
and Ownerand Owner. Adds some. Adds some
functionality to Crfunctionality to Createeate
and Crand CreateNew to assigneateNew to assign
default values to thesedefault values to these
prproperopertiesties

OverOverrides the executerides the execute
method for rmethod for readingeading
frfrom the database.om the database.

Defines additionalDefines additional
virvirtual methodstual methods
rrequirequired fored for
persisting datapersisting data

IntrIntroduces theoduces the
virvirtual methodstual methods
AcceptVAcceptVisitor andisitor and
Execute.Execute.

TVTVis DBUpdateis DBUpdate

OverOverrides therides the
Execute method forExecute method for
updating theupdating the
databasedatabase

TVTVisited Absisited Abs TVTVisitor Absisitor Abs

TPer Obj AbsTPer Obj Abs TVTVis DBAbsis DBAbs

TVTVis DBSelectis DBSelect

#AcceptV#AcceptVisitor: Booleanisitor: Boolean
#Init#Init
#MapRowsT#MapRowsToObjectoObject
DBConnection: TtiDBConnectionDBConnection: TtiDBConnection
Query: TQueryQuery: TQuery
#SetupParams#SetupParams
……

Iterate(TVIterate(TVisitorAbs)isitorAbs)
Caption: StringCaption: String
……

……

……

Deleted: BooleanDeleted: Boolean
Dirty: BooleanDirty: Boolean
ObjectState: TPersistentObjectStateObjectState: TPersistentObjectState
OID: IntergerOID: Interger
Owner: TPerObjAbsOwner: TPerObjAbs
CreateCreate
CreateNewCreateNew
……

#AcceptV#AcceptVisitor: Booleanisitor: Boolean
execute(TVexecute(TVisitedAbs)isitedAbs)
……

Execute(TVExecute(TVisitedAbs)isitedAbs)Execute(TVExecute(TVisitedAbs)isitedAbs)

……

➤ Figure 6

Query to the object and
UpdateObjectState sets the object’s
ObjectState to posClean, meaning it
has been read from the database
and no changes have been made.

These families of visitors are cre-
ated for each of the persisted
classes (TPerson, TAddress and
TEAddress) and are then registered
with the visitor manager. As you
can imagine, this involves a lot of
work but can be justified if you are
wanting true database independ-
ence and blindingly fast
performance.

All that remains is to map the
BOM into the GUI. This is done

using the three custom compo-
nents: TtiTreeView, Tti-
TreeViewPlus and finally
TtiListView.

The TtiTreeView is a
descendant of the
TCustomTreeView and has
an additional property,
Data that is of type
TPersistent. The Tti-
TreeView uses RTTI to
read the Data Caption
property to show in the
tree, and List properties
to show as child nodes.

The TtiTreeViewPlus
adds a panel to the right

of the TreeView for displaying the
node’s data. A family of forms is
registered with the TtiTreeView-
Plus, along with the class reference
of the data they will be displaying.
This automates the process of dis-
playing a node’s data in the right
hand panel of the form.

The TtiListView is much like the
TtiTreeView, in that it descends
from the TCustomListView and has
an extra property called Data of
type TList. This must contain a
TList of TPersistents so the
ListView can scan for published
properties and set up its columns.

TVTVisitor Managerisitor Manager

TVTVis Mappingis Mapping

TVTVisited Absisited Abs

-FV-FVisMappings: TStringListisMappings: TStringList
……

Execute(String, TVExecute(String, TVisitedAbs)isitedAbs)
RegisterVRegisterVisitor(String, TVisitor(String, TVisClassRef)isClassRef)
……

Iterate(TVIterate(TVisitorAbs)isitorAbs)
……

……

Execute(TVExecute(TVisitedAbs)isitedAbs)
ClassRef: TVClassRef: TVisClassRefisClassRef
VVisitorL TVisitorL TVisitorAbsisitorAbs
……

……

RegisterVRegisterVisitor: Crisitor: Create an instance ofeate an instance of
TVTVisMapping, assing it grisMapping, assing it groupNameoupName
and classRef prand classRef properoperties and add it toties and add it to
TFVTFVisMappings.isMappings.

RegisterVRegisterVisitor: For all visitors inisitor: For all visitors in
FVFVisMappings with a grisMappings with a groupNameoupName
matching the grmatching the groupName passed as aoupName passed as a
parameterparameter, execute the following:, execute the following:
VVisMapping.Execute(pVisMapping.Execute(pVisitor);isitor);

If an instance of the visitor does notIf an instance of the visitor does not
exist, then crexist, then create one.eate one.
Call the visitorCall the visitor’’s execute method.s execute method.

**

11

➤ Figure 5

52 The Delphi Magazine Issue 54

The source code for these three
components is on the disk and has
been compiled into a package
called tiPatterns.dpk, which must
be installed in the Delphi 5 IDE to
view the source of the demo.

Database Independence
Now that we have seen the persis-
tence framework in action, we can
revisit the importance of achieving
database independence. We only
need to replace the visitors if we
are switching between SQL data-
bases, or both the visitors and the
visitor manager if we are changing
the data access API.

The possibilities of persisting
the data are almost endless and
include: relational database (as
shown here), a file-based database
(like Access), a custom file format,
XML, direct access components
(eg IBObjects or DOA), multi-tier
access to a remote server, and data
access APIs like ADO. I hope to
cover these in a future article.

Summary
We have done a lot of work but only
managed to replace a very small
part of the persistence framework
that comes out of the box with
Delphi. However, what we have
done is overcome the limitations
inherent in Delphi’s persistent
architecture through the use of the
visitor and iterator patterns. We
have created an elegant way of dis-
playing hierarchical data using a
TreeView and ListView, and (most
importantly) have created the
potential for true database inde-
pendence. The outcome is a highly
optimised, flexible framework that
will outperform most conventional
client/server applications.

We shall take a look at the
TPersistent aware TreeView and
ListView, along with substituting
an alternative persistence layer in
a future article. I hope you find this
information useful and you are wel-
come to contact me at the address
below if you would like to discuss
this article further.

Further Information
The object modelling tool I used to
prepare the class diagrams was the
highly regarded SimplyObjects,

Interface
Type
// Each of these classes implement the following methods,
// but as they are the same across classes, they are not shown here.
//protected
// function AcceptVisitor : boolean ; override ;
// procedure Init ; override ;
// procedure SetupParams ; override ;
// procedure MapRowsToObject ; override ;
TVisPersonRead_PK = class(TVisDBSelect)
TVisPersonRead_Detail = class(TVisDBSelect)
TVisPersonUpdate = class(TVisDBUpdate)
TVisPersonDelete = class(TVisDBUpdate)
TVisPersonCreate = class(TVisDBUpdate)

// The classes are registered with the visitor manager
// in the initialazation section.
//.The registration order is important. For example,
// child classes must be deleted before a parent class,
// and parent classes must be created before a child
// class.
initialization
gVisitorCache.RegisterVisitor(cgsAdrs_Read_PK, TVisPersonRead_PK) ;
gVisitorCache.RegisterVisitor(cgsAdrs_Read_Detail, TVisPersonRead_Detail) ;
gVisitorCache.RegisterVisitor(cgsAdrs_Update, TVisPersonCreate) ;
gVisitorCache.RegisterVisitor(cgsAdrs_Update, TVisPersonUpdate) ;
gVisitorCache.RegisterVisitor(cgsAdrs_Update, TVisPersonDelete) ;

➤ Above: Listing 15

function TVisPersonRead_Detail.AcceptVisitor: boolean;
begin
result := (Visited is TPerson) and (TPerObjAbs(Visited).ObjectState = posPK);

end;
procedure TVisPersonRead_Detail.Init;
begin
Query.SQL.Text := 'select ' + ' title ' + ' ,initials ' +
' ,notes ' + 'from ' + ' person ' + 'where ' +
' oid = :oid ' ;

end;
procedure TVisPersonRead_Detail.SetupParams;
begin
Query.ParamByName('OID').AsInteger := TPerson(Visited).OID ;

end ;
procedure TVisPersonRead_Detail.MapRowsToObject;
begin
with Visited as TPerson do begin
Title := Query.FieldByName('Title').AsString ;
Initials := Query.FieldByName('Initials').AsString ;
Notes := Query.FieldByName('Notes').AsString ;

end ;
end;
procedure TVisPersonRead_Detail.MapRowsToObject;
begin
ObjectState := posClean ;

End ;

➤ Below: Listing 16

which allows you to draw class and
interaction diagrams, forward and
reverse engineer Delphi code and
generate website documentation
too. Visit www.adaptive-arts.com/
prod_downloads.htm for an
evaluation copy.

The Melbourne Patterns Group is
a discussion group that meets
twice a month to discuss the evolu-
tion of the pattern language of pro-
gramming (PLOP) and the use of
design patterns to solve real-life
business problems. The address of
the Melbourne Patterns Group
website is www.win32dev.com/
patterns. It contains some useful
links to other sites that discuss the
use of design patterns in software
development.

The pattern language Crossing
Chasms is well worth a read as it
gives a clear insight into the prob-
lems of mapping an object oriented
system into a relational database.

Download it from

www.ksccary.com/Articles/
ObjectRDBMDPatterns/
ObjectRDBMSPattern.htm

A useful source of information on
OO to relational database persis-
tence is at www.ambysoft.com

Reference
Design Patterns: Elements of Reus-
able Object-Oriented Software.
Gamma, Helm, Johnson, Vlissides.
Addison Wesley, 1995.

Peter Hinrichsen is a Certified
Inprise Consultant and Director of
TechInsite P/L in Melbourne, Aus-
tralia, specialising in client/server
and multi-tier OO development in
Delphi. Email Peter at peter_
hinrichsen@ techinsite.com.au
© TechInsite Pty Ltd 2000

	I Hate Data Aware Controls...
	Design Targets
	Business Object Model
	Database Structure
	Patterns We Shall Use
	The Iterator
	Abstract Persistent Object
	The Visitor
	Visitor Manager
	Implementing Persistence
	Database Independence
	Summary
	Further Information
	Reference

